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1. Introduction

The discovery of gauge/gravity dualities [1, 2] has profoundly influenced string theoretic

investigations of quantum gravity. In contexts where they are known, these dualities appear

to provide a complete non-perturbative formulation of the theory and allow one to study

the emergence of (bulk) spacetime as an effective description when curvatures are small;

see e.g. [3]. If this program is fully successful, one will be able to address deep questions

concerning black holes, singularities, and the like by performing definite calculations in the

gauge theory dual.

However, such dualities are known only when certain boundary conditions are imposed

on the bulk string theories. The best studied case is that of asymptotically anti-de Sitter

(AdS) boundary conditions (crossed with some compact manifold), and other well-studied

examples [4 – 6] have qualitatively similar boundary conditions. It is clearly of interest to

understand if dualities exist in more general settings. The case of asymptotically de Sitter

spacetimes has received much attention (see e.g. [7, 8]) and some simple cosmologies have

been studied, but asymptotically flat settings are relatively unexplored.

We will pursue the asymptotically flat context here. At first glance, it might appear

that an asymptotically flat holographic duality must differ radically from AdS/CFT. The-

ories dual to AdS are associated with the Sn−1×R which forms the conformal boundary of
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Figure 1: Conformal diagrams of asymptotically AdS space (on the left) and asymptotically flat

space (on the right). The two corners marked i0 on the asymptotically flat diagram are to be

identified.

AdS, and which is a Lorentz-signature spacetime in its own right. In contrast, the smooth

part (I) of the asymptotically-flat conformal boundary is well-known to be null. This

makes it more difficult to imagine I as a home for a dual theory, though several interesting

attempts have been made [9 – 11].

However, as emphasized in [12], the notion of a conformal boundary is itself not funda-

mental to AdS/CFT. Rather, this role derives from the convenient way in which the AdS

conformal boundary parametrizes the space of possible boundary conditions on propagat-

ing fields. Each possible boundary condition defines a bulk theory, which is then dual to

a particular non-gravitating field theory (with a particular Lagrangian) on Sn−1 × R. In

contrast, in the asymptotically flat setting, data on the conformal boundary (I) naturally

encodes (part of) the information about the state; changing a solution on I− (I+) alters

the initial (final) data but does not change the dynamics. Instead, boundary conditions are

naturally imposed at spacelike infinity, i0. This fact will be reviewed in detail in section 2

below.

Although i0 is represented by a single point in the conformal compactification, it may

be better thought of as a timelike hyperboloid. A particularly nice construction of this

‘boundary’ was given in [13]. The essential point is that physical fields do not admit smooth

limits at the point i0 of the conformal diagram. Instead, they admit limits which depend

(smoothly) on the spacelike direction along which one approaches i0 (see e.g. [14, 15]).

Thus, for a d-dimensional asymptotically flat spacetime, the asymptotics (and, as we will

see, the boundary conditions) are associated with functions on the (d − 1)-dimensional

hyperboloid H of spacelike directions. Note that H is naturally regarded as a signature

(d−2)+1 manifold, and that it is isometric to the unit (d−1)-dimensional de Sitter space.

One imagines that H may provide a more hospitable home for a dual theory than I.

The above reasoning is strengthened by a comparison with linear dilaton backgrounds.

Despite certain complicating features, string theory in appropriate linear dilaton back-
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grounds is known to be dual to a (in this case, non-local) non-gravitating theory [6]. The

prime example is the case of little string theory [16], where string theory with asymptotics

given by the near-horizon limit of N NS5-branes is dual to the low-energy limit of the open

string theory on the branes. Here the ground state of the bulk theory is described by the

string-frame metric

ds2
string = dx2

6 + dz2 + dΩ2
3, (1.1)

where dx2
6 is the 5+1 Minkowski metric, and dΩ2

3 is the metric on the unit-sphere. Due

to the dx2
6 + dz2 factor, it is clear that the smoothest part of the conformal boundary is

just I6, the null boundary of 6+1 Minkowski space.1 However, the non-gravitating dual

lives on the 5+1 Minkowski space R
5,1 associated with the branes, and not on I6. The

R
5,1 is a Lorentz signature spacetime which, as described in [6], can be associated with the

large z asymptotics of the linear dilaton spacetime. Roughly speaking, the dual little string

theory “lives” at spacelike infinity. This is exactly what we propose in the asymptotically

flat context.

Some of the above reasoning was used in [17, 18] to motivate the introduction of a

(classical) boundary stress tensor on H. The stress tensor is a one-point function, and

our interest here will be in generalizing the discussion to both the quantum case and to

higher (n-point) boundary correlators. We begin by reviewing the structure of fields near

spatial infinity and discussing possible (infinitesimal) deformations of the usual boundary

conditions in section 2. Section 3 then considers variations of the path integral with respect

to these boundary conditions. First variations lead to a natural definition of boundary

operators. However, subtleties arise for higher correlators.

Section 4 computes boundary two-point functions for operators dual to both massive

and massless bulk fields. Two different computations are considered. The first uses the

on-shell action and attempts to apply the method used by Gubser, Klenanov, and Polyakov

in the AdS context [19]. This method, however, does not appear to give a useful answer to

our problem. Instead, non-local analogues of ‘contact terms’ make the result ambiguous.

This same feature previdents a straightforward application of the method of [12]. However,

our second computation is more successful. Here we first calculate the boundary Wightman

function, which is free of contact divergences and well-defined. The result then determines

the time-ordered two-point function and guarrantees that it has the expected analytic

structure. For comparison, we show that similar results hold for linear dilaton backgrounds

dual to little string theory. We close with some further discussion in section 5.

2. Fields near spatial infinity

The complete definition of a field theory generically requires a choice of boundary condi-

tions. In finite volume or in asymptotically anti-de Sitter spacetimes, the fact that signals

can propagate from the boundary to the bulk makes the need for boundary conditions

especially clear. Boundary conditions are required to fully specify the evolution, as well as

to conserve symplectic flux (and thus to make any covariant phase space well-defined).

1Even this boundary is not strictly smooth due to the fact that conformal compactification shrinks the

3-sphere to zero size on the boundary.
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Boundary conditions in asymptotically flat space are more subtle, but their necessity

can be clearly seen in the context of, e.g., non-gravitating scalar field theories on Minkowski

space. The scalar wave equation admits many solutions which diverge at spatial infinity,

and which cannot be allowed as propagating degrees of freedom if either the energy or the

symplectic structure is to be finite. In order to construct a well-defined phase space, one

must fix the part of the field associated with such (non-normalizable) modes, allowing only

the normalizable part to be dynamical.

The fixed non-normalizable modes are a background structure which play the same

roles as do boundary conditions in finite volume. In general, it is necessary only to fix

the asymptotic behavior of the field. As a result, we may think of their specification as

corresponding to a choice of “boundary conditions at spatial infinity,” and we will use

this terminology below. Much the same association between boundary conditions and

non-normalizable modes is familiar in the anti-de Sitter context (see e.g. [12, 19 – 21]).

Many readers may think of spatial infinity as a single point (i0) in the Penrose com-

pactification (see e.g. [22]) of Minkowski space. However, for the reasons stated in section 1,

it is better to consider spacelike infinity to be the hyperboloid H (see [13 – 15]) of spacelike

directions. To understand this description, recall that the line element of d-dimensional

Minkowski space may be written in hyperbolic coordinates as

ds2 = dρ2 + ρ2ωijdηidηj , (2.1)

where ρ2 = xax
a, ωij is the metric on the unit (d − 1)-dimensional Lorentz-signature

hyperboloid H, and ηi are coordinates on H. Spacelike infinity is essentially the large ρ

limit of the constant ρ hyperboloids.

2.1 Massive free scalars

Let us recall the structure of solutions to the (massive) free scalar wave equation on

Minkowski space in the hyperbolic coordinates (2.1). The wave equation is

0 = (¤ − m2)φ =

(

1

ρd−1
∂ρρ

d−1∂ρ +
1

ρ2
∇2

H − m2

)

φ, (2.2)

where ∇2
H is the scalar D’Alembertian on H and m2 > 0. Any solution to (2.2) is a linear

combination of the modes

Φq,~j = ρ
2−d
2 Îν(mρ)Yq,~j, and

φ̃q,~j = ρ
2−d
2 Kν(mρ)Yq,~j , (2.3)

where Iν(mρ),Kν(mρ) are the usual modified Bessel functions with ν =

√

−q2 +
(

d−2
2

)2

and Îν denotes the real part2 of Iν . Thus, Îν = Î−ν for imaginary ν. The Yq,~j are harmonics

on H satisfying

∇2
HYq,~j = q2Yq,~j. (2.4)

2Recall that Kν is real for all real ν2, but that Iν is real only ν2 > 0. It is useful to choose our mode

functions to be real for ν2 < 0 as well.
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At least for normalizable modes, we choose Yq,~j so that Kν(mρ)Yq,~j is purely positive

(negative) frequency in the usual sense on Minkowski space, according to the positive

(negative) sign of q. Such a choice must be possible since any normalizeable mode has a

unique decomposition into positive and negative frequency parts, and the decomposition

respects Lorentz invariance. Thus, the ‘projection’ onto the positive frequency subspace

commutes with each element of the Lorentz group and is proportional to the identity in

any irreducible representation.

The index ~j is an additional label to account for all further degeneracies. For later

use, we note that ~j specifes a harmonic Y~j on Sd−2. Thus, ~j specifes an integer spin

representation of SO(d − 1), as well as a state within this representation; e.g, ~j = (j,m)

for SO(3). We denote the usual quadratic Casimir of SO(d − 1) by |~j|2 = j(j + d − 3) for

j ∈ Z.

Let us ask which solutions above represent propagating degrees of freedom. First,

propagating modes should be (Klein-Gordon) normalizable at large ρ, restricting them to

linear combinations of the φ̃q,~j. Second, they should be normalizable at small ρ. However,

for real ν the Bessel function Kν grows like ρ−ν as ρ → 0. Thus, normalizeable modes

satisfy

q2 ≥
(

d − 2

2

)2

. (2.5)

As noted in, e.g. [23, 24], such Yq,~j lie in the princpal series of SO(d− 1, 1) representations,

except for the marginal case q = ± (d−2)
2 (which is a member of the complimentary series,

see e.g. [25]). As a result, they are delta-function normalizable in L2(H). We take them to

satisfy
∫

H

√
−ω Y ∗

q,~j
Yq′,~j′ = δ(q − q′)δ~j,~j′ . (2.6)

The L2(H) normalizability of Yq,~j corresponds to the expected behavior of propagating

fields in the distant future and past along the hyperboloid H as follows: In the distant past

and future, each constant ρ hyperboloid Hρ approaches the null cone through the origin.

Now, solutions to (2.2) decay along this null cone in the same manner as the massive

Green’s function (as r−(d−1)/2). However, the volume of spherical slices of H grows only

as rd−2. Since r increases exponentially with proper time along H, we see that smooth

solutons should lie in each L2(Hρ). In general, normalizable solutions can be obtained

through (continuous) superpositions of modes normalized as in (2.6).

Thus, the modes φ̃q,~j (satisfying (2.5)) form a basis for the propagating solutions.

Other modes which have divergent Klein-Gordon norm at large ρ are non-dynamical and

must describe a fixed background. Such modes are specified as part of the “boundary

condition” which defines the system. We see that any Φq,~j provides a well-defined boundary

condition of this sort. However, such boundary conditions will be of less interest if they are

orthogonal to all normalizable modes with respect to the inner product on L2(H). Since

the Yq,~j are eigenstates in L2(H) of the self-adjoint operator ∇2
H with eigenvalue q2, and

since eigenstates with different eigenvalues are orthogonal, the most interesting boundary
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conditions will also satisfy (2.5). As a result, we will often restrict consideration below to

those Φq,~j which satisfy (2.5).

Let us write a general solution as φ = Φ+ φ̃, where Φ is a superposition only of the Φq,~j

modes and φ̃ is a superposition only of the modes φ̃q,~j, both satisfying (2.5). Asymptotically

we have

Iν(mρ) ∼ emρ

√
2πmρ

,

Kν(mρ) ∼ e−mρ

√

2mρ/π
, (2.7)

so that Φ, φ̃ can be characterized by arbitrary functions α, β on H defined by

α(η) := 2m lim
ρ→∞

ρ
d
2 Kν(mρ)Φ(x) = lim

ρ→∞
(ρ

d
2 Kν(mρ))

←→
∂ ρΦ,

β(η) := −2m lim
ρ→∞

ρ
d
2 Iν(mρ)φ̃(x) = lim

ρ→∞
(ρ

d
2 Iν(mρ))

←→
∂ ρφ̃. (2.8)

From (2.7) we see that (2.8) is independent of the choice of ν. Boundary conditions which

require the full solution φ = Φ+ φ̃ to be normalizable will be called “fast fall-off” boundary

conditions; these clearly impose α = 0.

Equation (2.8) describes a natural pairing between boundary conditions and propa-

gating solutions. It is useful to write this pairing in terms of the “boundary product” (◦)
of two solutions φ1 = Φ1 + φ̃1, φ2 = Φ2 + φ̃2:

φ1 ◦ φ2 =

∫

∂M

√
−h φ1n

a←→∂ aφ2 =

∫

H

√
−ω(α1β2 − α2β1), (2.9)

where αi, βi are defined as in (2.8) using Φi, φ̃i respectively. The symbol
∫

∂M denotes the

ρ → ∞ limit of a family of integrals, each performed over a hyperboloid Hρ at fixed ρ

having unit outward-pointing normal na and induced metric hij = ρ2ωij. As argued above,

one expects propagating modes to have β ∈ L2(H). Clearly, it is also natural to take

α ∈ L2(H), in which case (2.9) is finite.

2.2 Massless free scalars

Let us now consider the special case m = 0. In this limit the mode functions are no longer

exponential at infinity, and their asymptotic behavior now depends on the harmonic on H.

Any solution to the massless Klein-Gordon equation is a linear combination of the modes

ρλ±Yq,~j, where

λ± = −d − 2

2
±

√

(

d − 2

2

)2

− q2. (2.10)

As in the massive case, normalizability considerations require propagating modes to be

oscillatory near ρ = 0, and so again impose (2.5).

Now, when (2.5) holds, the massless modes are also oscillatory at large ρ. Thus, there is

some freedom with regard to which modes are considered to be dynamical and which modes

are taken to define boundary conditions. One may check, however, that for the system to
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have a well-defined phase space (and, in particular, for the symplectic flux through H to

vanish), that one may allow only a single propagating mode for each (q,~j) satisfying (2.5).

The situation appears to be analogous to that of scalars in AdS with masses close to the

Breitenlohner-Freedman bound [26], in which there is a large freedom to choose boundary

conditions. We shall assume that some particular choice has been made and denote the

corresponding propagating modes by φ̃q,~j. We denote another linearly independent set of

modes by Φq,~j, which we think of as describing particularly simple boundary conditions;

namely, those boundary conditions for which the space of propagating modes remains

unchanged from the choice made above. We require only that Φq,~j, φ̃q,~j are each of the

form f(ρ)Yq,~j and that our modes satisfy the normalization conditions:

Φ∗
q,′~j′

◦ φ̃q,~j = −δ(q − q′)δ~j,~j′ ,

〈φ̃∗
q,~j

, φ̃q′,~j′〉KG := i

∫

Σ

√
gΣ φ̃∗

q,~j
na←→∂ aφ̃q′,~j′ = sign(q)

µ

2
|Γ(iµ)|2δ(q − q′)δ~j,~j′, (2.11)

where µ =

√

q2 −
(

d−2
2

)2
and Σ is a Cauchy surface with induced volume element

√
gΣ and

unit future-pointing normal na. We have chosen the normalization factor on the right-hand

side of (2.11) in order to mirror the normalization of the massive modes (which is computed

in the appendix, see (A.10)).

For m2 > 0, we parametrized the linear solutions in terms of two functions α, β on H.

This is again possible here; for example, one may take

α =
∑

~j

∫

q2≥((d−2)/2)2
dq Yq,~j φ̃∗

q,~j
◦ Φ and

β =
∑

~j

∫

q2≥((d−2)/2)2
dq Yq,~j Φ∗

q,~j
◦ φ̃, (2.12)

where ◦ again denotes the boundary product (2.9). As before, φ̃ denotes a general linear

combination of the φ̃q,~j, and Φ denotes a general linear combination of the Φq,~j. Equa-

tions (2.12) are the natural extension to m2 = 0 of α, β defined in (2.8) for m2 > 0.

However, for massless fields it is less clear that (2.12) gives a natural notion of locality on

H. We see that the extraction of α, β requires the sort of “mode-dependent renormaliza-

tion” that is also required in linear dilaton backgrounds (see e.g. [27]).

2.3 Interacting and non-scalar fields

Sections 2.1 and 2.2 above reviewed boundary conditions at i0 for linear scalar fields.

Parametrizing the space of boundary conditions for an interacting field theory is more

difficult. Unless one imposes the “fast fall-off” boundary condition α = 0, the non-linear

interactions become strong near infinity and are hard to control. However, one may linearize

the space of boundary conditions about α = 0. Infinitesimal deformations of the boundary

conditions are described by the addition of some linearized solution δΦ (which is again a

linear combination of the modes Φq,~j from sections 2.1 or 2.2). In this way, it is meaningful

to vary even a non-linear theory with respect to α, so long as one evaluates all such
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variations at α = 0. A similar structure is commonly used to discuss boundary conditions

of massive scalar fields in AdS (see e.g. [28]), and is the best that one can expect for

masses sufficiently far above the Breitenloher-Freedman bound, where they correspond to

non-renormalizable deformations of the dual field theory.

For the sake of clarity, we have concentrated on scalar field theory. The generalization

to fields of higher spin is straightforward. For concreteness, let us briefly discuss the case

of the gravitational field itself. Linearized gravitational fluctuations about asymptotically

flat space are similar to the linear scalar solutions reviewed above (see e.g. [29 – 31]. We

may take, e.g., the boundary conditions of [32] (for d = 4) or [17] (for d ≥ 4) to define

a notion of “fast fall-off.” Only these boundary condtions are asymptotically flat. Other

boundary conditions which break asymptotic flatness may then be studied perturbatively,

much as was done for the massless scalar field. This will be sufficient to construct the

asymptotically flat analogue of the ‘boundary correlators’ used in the AdS/CFT dictio-

nary, which are related to infinitesimal variations of the path integral with respect to the

boundary conditions. The issue of finite deformations of asymptotic flatness is more compli-

cated, however. While a reasonable theory of such deformations may exist, it is clear from

e.g. [30] in d = 4 (or [31] in higher dimensions) that such deformations destroy the entire

asymptotic structure near spatial infinity. One expects that such deformations correspond

to non-renormalizable deformations of the dual theory.

2.4 A warning about locality

In the above sections we described boundary conditions at spatial infinity in terms of a

function α on H. This presentation was chosen to maximize similarity with the asymptot-

ically AdS case, where boundary conditions are conveniently represented by functions on

the conformal boundary. However, we warn the reader that the corresponding notion of

locality on H is less useful than on the analogous AdS boundary.

This is not a surprise from the standpoint of gauge/gravity duality. In AdS/CFT, it

is well known that the local properties of the CFT are related to the asymptotic structure

of AdS space. One sees this already at the level of symmetries: certain (asymptotic) AdS

isometries induce a dilation on the conformal boundary, so that taking a bulk operator

to the boundary naturally results in a local dual operator. Similarly, the wave equation

associates point sources on the boundary with a position-dependent length scale in the bulk

which goes to zero at the boundary. Since it was observed in [27, 33] that such properties

fail to hold with either linear dilaton or asymptotically flat boundary conditions, we may

expect the corresponding locality properties to fail as there well.

Let us take a more precise look at this connection. Since deformations of AdS boundary

conditions correspond to the addition of CFT sources, the ‘locality’ of such sources should

be reflected in corresponding local properties of the boundary conditions. Indeed, such a

locality property was pointed out in [12] in the Euclidean context: Consider a deformation

of AdS boundary conditions described by some δα of compact support on the boundary. A

given bulk solution φ will be deformed in a complicated way, even at parts of the boundary

far from the support of δα. However, away from the support of δα, the new solution will

still respect the original boundary conditions. One often says that δφ is “normalizable”

– 8 –
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outside the support of δα. The same is true in the Lorentzian setting where, as shown

in [34, 35], in the Poincaré patch one may choose the deformation to vanish in an open set

whose intersection with the boundary contains all points outside the support of δα.

In contrast, this feature does not hold in our asymptotically flat context. While δα

controls the leading ρ behavior, it does not provide the same ‘local’ description of other non-

normalizable terms in Φ. It is instructive to compute the ‘bulk-boundary propagator’ G∂

for asymptotically flat space: One begins with a bulk Green’s function G(x, x′) satisfying,

say, Feynmann boundary conditions. One then takes xa = ρη̂a for some spacelike unit

vector η̂a and considers the large ρ limit. To obtain a finite result, one rescales the limit

by the same function of ρ as is used to define the boundary value β in (2.8).

One finds

G(x, x′) ∼ md−2 e−m|x−x′|

(m|x − x′|) d−1

2

= md−2 e−mρe+mx′aη̂a

(mρ)
d−1

2

(

1 + O(ρ−1)
)

, (2.13)

so that

G∂(η̂, x′) ∼ −
√

2m

π
lim

ρ→∞
ρ

d−1

2 emρG(x, x′) = −m
d−2

2

√

2

π
emx′aη̂a . (2.14)

But now if we consider x′a = ρη̂′a as ρ → ∞, we find that (2.14) diverges whenever

η̂′aη̂a > 0. The non-normalizable behavior is not localized at the point η̂ ∈ H.

How is this feature to be interpreted? We argue in the rest of this work that it

is merely another sign of non-locality in the dual theory. In particular, we are able to

calculate boundary two-point functions in section 4. We also show in section 4.3 that the

above feature also arises for the linear dilaton background dual to little string theory [6],

and is therefore not an obstruction to the existence of a meaningful dual.

3. Boundary operators, path integrals, and the S-matrix

In anti-de Sitter space, boundary correlators are variations of either the partition func-

tion [12] (in Euclidean signature) or of a transition amplitude 〈ψ+|ψ−〉 [19 – 21] (in Lorentz

signature, see [36] for details). In the latter case, the variation is performed holding |ψ−〉
fixed in the far past (retarded boundary conditions) and holding |ψ+〉 fixed in the far future

(advanced boundary conditions). By letting |ψ+〉 and |ψ−〉 range over a complete set of

states, one defines a full boundary operator. It is such operators which are most naturally

dual to CFT operators under the AdS/CFT correspondence. Up to a certain rescaling,

they are simply boundary limits of bulk operators (see e.g. [37]).

Our goal here is to investigate the analogous construction in asymptotically flat space.

For concreteness we again consider scalar field theory, but the analysis generalizes directly

to higher spin fields. A study of first variations will motivate a definition of ‘boundary

operators.’ We then address higher variations and find that issues involving contact terms

are more complicated than in AdS space. Nevertheless, boundary n-point functions may

be defined directly in terms of the above-mentioned boundary operator. We will return to

these issues again in section 4.
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We begin with a (Lorentz-signature) path integral of the form 〈ψ+|ψ−〉 =
∫

DφeiS ,

where the integral is only over fields φ satisfying the fast fall-off boundary conditions3 of

section 2. Note that we have absorbed factors containing the wavefunctions of the states

|ψ±〉 into S. These factors contribute extra boundary terms to S at the past and future

boundaries Σ±. While they are localized on Σ±, the particular form of these boundary

terms is generically non-local within Σ±.

To deform our boundary conditions by an infinitesimal amount α, we shift the domain

of integration by some (infinitesimal) Φ which satisfies either (2.8) or (2.12) for this α.

We require Φ to be a solution to the classical equations of motion up to some fast fall-off

configuration. That is, there must be some fast fall-off configuration φ̃ (which need not be

a solution) such that Φ − φ̃ is a classical solution.4

To vary 〈ψ+|ψ−〉, we must understand how the action S depends on the boundary

conditions. This depends on how both the bulk dynamics and the states |ψ±〉 vary with

Φ. In AdS, one would choose Φ to vanish on Σ± so as to preserve advanced boundary

conditions on |ψ+〉 and retarded boundary conditions on |ψ−〉. However, as discussed in

section 2.4, such a choice is not in general possible in the asymptotically flat context. Thus,

we must allow an arbitrary deformation of S on Σ± and attempt to define our boundary

operators so that they are independent of this ambiguity. We will, however, require at each

perturbative order in Φ that i) S yields the same bulk equations of motion as for Φ = 0

and that ii) S be stationary on classical solutions.

Such principles do not fully determine the desired extension of S, but they do constrain

the possibilities. Suppose that the action for Φ = 0 takes the standard form

S0 = −
∫

M

(

1

2
∂φ2 + V (φ)

)√−g +

∫

Σ+∪Σ−
S±. (3.1)

Here M represents a volume of spacetime to the future of a Cauchy surface Σ− on which

ψ− is specified, and to the past of an analogous Σ+ on which ψ+ is specified. The boundary

terms S± on Σ± depend on the details of the states ψ±. In terms of φ̃ = φ − Φ, we seek

an action of the form S = S0[φ] + S1[Φ, φ̃] where S1 is a boundary term linear in Φ such

that variations δS performed holding Φ fixed vanish on solutions (to first order in Φ). One

finds

δS0 =

∫

M

√−g
(

∇2φ − V ′(φ)
)

δφ −
∫

∂M

√
−h(na∂aφ)δφ +

∫

Σ+∪Σ−
B±. (3.2)

Here ∂M denotes only the boundary of ∂M at spatial infinity; i.e., the part of H which

lies between the Cauchy surfaces Σ±.

The bulk term in (3.2) contains just the desired equations of motion. Since δφ = δφ̃

and
∫

∂M
√
−h(na∂aφ̃)δφ̃ vanishes for any normalizable solution φ̃, on appropriate solutions

3In the massive case. In the massless case we assume that, as in section 2, some split of modes has been

made into Φ and φ̃ and that a boundary condition has been chosen to enforce Φ = 0.
4This condition is to be understood at leading order in ~ and may receive quatnum corrections. It is also

interesting to ask what happens if one shifts the domain of integration by a non-normalizable configuration

which as ~ → 0 differs from any solution to the classical equation of motion by a non-normalizable term.

However, in this case, it is not clear that the deformed path integral is well-defined. Certainly, the semi-

classical approximation breaks down as there are no stationary points in the domain of integration.
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we find

δS0 = −
∫

∂M

√
−h(na∂aΦ)δφ̃ +

∫

Σ+∪Σ−

B±. (3.3)

The term at ∂M in (3.3) does not vanish and will be cancelled by the variation δS1. One

would like to use the condition B± = 0 to impose boundary conditions on solutions at Σ±,

but it is not clear whether such conditions are compatible with the equations of motion for

Φ 6= 0. To achieve compatibility, the boundary terms at Σ± may need to be corrected by

a term in S1. Thus, S1 must be of the form

S1 =

∫

∂M

√
−h(φ̃ + c)(na∂aΦ) +

∫

Σ+∪Σ−

B
(1)
± Φ + O(α2), (3.4)

where c is some fixed function on ∂M and B
(1)
± are linear operators on Σ±. Below we

take c = 0, but a more general choice merely shifts our boundary operators by some set

of c-numbers. We will, however, need to define our boundary operators in a way that is

independent of B
(1)
± .

We are now ready to vary the boundary conditions in our path integral, shifting the

region of integration by δφ = δΦ. With S = S0 + S1, this variation yields

δ〈ψ+|ψ−〉
∣

∣

∣

Φ=0
=

∫

Dφ ieiSδS
∣

∣

∣

Φ=0

=

∫

Dφ ieiS

[

∫

M

√−g
(

∇2φ − V ′(φ)
)

δΦ +

∫

∂M

√
−h φna←→∂a δΦ

+

∫

Σ+∪ Σ−
B±(δΦ)

∣

∣

∣

Φ=0
+

∫

Σ+∪ Σ−
B

(1)
± δΦ

]

= i

∫

∂M

√
−h 〈ψ+|φ̂|ψ−〉na←→∂a δΦ +

∫

Σ+∪Σ−

B
(1)
± δΦ, (3.5)

where in the last step we have used the fact that the matrix elements of both B± and the

equations of motion vanish5 and we have introduced the local bulk quantum field operator

φ̂(x). We shall reserve the symbol φ(x) for c-number field configurations, such as classical

solutions or configurations over which one integrates in the path integral.

We wish to define a boundary operator which is independent of B
(1)
± , as this term is

associated with the arbitrary extension of the state |ψ±〉 to non-zero Φ. It is thus natural

to define the boundary operator φ̂∂(α) to be (−i times) the part of (3.5) given by a local

integral over ∂M:

φ̂∂(α) :=

∫

∂M

√
−h φ̂(x)na

←−→
∂

∂xa
(Φ[α]) (x), (3.6)

for any function α on H. Here Φ[α] is any solution associated with α(η) through (2.8)

or (2.12). This is a direct analogue of the familiar structure from AdS space, and in

5While less familiar, the vanishing of 〈ψ+|B±|ψ−〉 is established in the same manner that one demon-

strates that the vanishing of corresponding matrix elements of the equations of motion. One shifts the

integration variable by a normalizable configuration and notes that this changes neither the measure nor

the domain of itnegration. Thus, the change in the path integral is zero, though by computation it is pro-

portional to a linear combination of the above matrix elements. By considering all such shifts, one shows

that all of these matrix elements vanish separately.
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particular parallels the construction of AdS asymptotic creation and annihilation operators

in [38]. For m2 > 0, the discussion at the end of section 2.1 implies that (3.6) is well-defined

when acting on a dense set of states.

We may also consider the higher correlators

〈ψ+|φ̂∂(α1)φ̂∂(α2) . . . φ̂∂(αk)|ψ−〉. (3.7)

These Wightman functions are defined directly by repeated application of the boundary

operators (3.6) to the state |ψ−〉, though through (3.6) we see that they satisfy

〈ψ+|φ̂∂(α1)φ̂∂(α2) . . . φ̂∂(αk)|ψ−〉 =

∫

∂M

√
−hdd−1η1 . . .

∫

∂M

√
−hdd−1ηk

×Φ[α1](x1) . . . Φ[αk](xk)n
a
1

←−→
∂

∂x1
a

. . . na
k

←−→
∂

∂xk
a
〈ψ+|φ̂(x1) . . . φ̂(xk)|ψ−〉. (3.8)

Here the (ρi, ηi) are the hyperbolic coordinates of xi.

It is also interesting to discuss time-ordered boundary correlators defined by

〈ψ+|T
(

φ̂∂(α1) . . . φ̂∂(αn)
)

|ψ−〉 :=

∫

∂M

√
−hdd−1η1 . . .

∫

∂M

√
−hdd−1ηk

×Φ[α1](x1) . . . Φ[αk](xk)n
a
1

←−→
∂

∂x1
a

. . . na
k

←−→
∂

∂xk
a
〈ψ+|T

(

φ̂(x1) . . . φ̂(xk)
)

|ψ−〉. (3.9)

In the AdS context, time-ordered k-point boundary correlators are kth functional

derivatives of the transition amplitude 〈ψ+|ψ−〉. However, due to contact terms, this

relation holds only when the supports of the variations do not overlap. With AdS asymp-

totics, it is not difficult to choose the Φ[αi] to have non-overlapping support in the bulk

spacetime. However, this is not in general possible in asymptotically flat space. As noted

in section 2.4, even for functions α1, α2 with well separated supports on H, the supports

of the bulk functions Φ[α1],Φ[α2] must overlap. Thus, for k > 1, time-ordered k-point

functions are variations of the path integral only up to i) terms at Σ± as in the discussion

of one-point functions and ii) additional (typically divergent) terms associated with contact

terms in the bulk. We refer to terms of type (ii) as “contact terms” even though they occur

for boundary operators with disjoint supports.

4. Boundary correlators

Having discussed the general structure of our boundary operators, we now compute bound-

ary two-point functions. We attempt two computations, though only one succeeds. The

first (section 4.1) is an attempt to follow the analogue of the procedure [19] used by Gubser,

Klebanov, and Polyakov for AdS/CFT. Unfortunately, this approach suffers from the diver-

gent non-local contact terms mentioned in section 3 above. As a result, it is unclear which

non-local terms one should substract to obtain the correct (finite) two-point function. The

same non-local contact terms prevent a straightforward application of the method of [12].

On the other hand, we show (section 4.2) that the boundary Wightman two-point

functions are readily calculated using the basic definition (3.6). The result is finite and
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unambiguous, and it leads to a (well-defined) time-ordered boundary two-point function

with the expected analytic structure. To gain additional perspective on the above issues,

we consider the same calculations in linear dilaton backgrounds in section 4.3 and find

similar results.

4.1 Boundary 2-point functions via variations of the action

We noted in section 3 that our time-ordered boundary two-point functions are the second

variations of a bulk partition function, up to contact terms and terms at Σ±. In the limit

in which the bulk system is semi-classical, this variation is just the on-shell variation of the

bulk action:

〈|T
(

φ̂∂(δ1α) φ̂∂(δ2α)
)

|0〉
〈0|0〉 ≈ −δ1δ2S + contact terms + terms at Σ±. (4.1)

To compute such correlators, we study variations of the semi-classical action and attempt

to remove the extraneous terms. This is essentially the approach to calculating boundary

correlators (in AdS) advocated in [19]. Since the goal is to obtain time-ordered vacuum

correlators, one expects that one may avoid consideration of future and past boundary

terms by analytic continuation to Euclidean signature and taking Σ± to infinity. We shall

do so below.

The variation δ1δ2S evaluated at φ = 0 depends only on the part of the action quadratic

in φ; it is independent of any couplings of φ to itself or to any other fields (including gravity).

The calculation is similar to (3.2) and yields:

δ1δ2S = −
∫

∂M

√
−h δ1Φ[α] na∂aδ2Φ[α], (4.2)

where δ1α, δ2α are now functions on Sd−1 and δ1Φ[α], δ2Φ[α] are solutions (up to normal-

izable terms) associated with δ1α, δ2α through the Euclidean version of (2.8) or (2.12).

As usual, the calculation is most straightforward using normal modes. Thus we take

δ1α = ε1Y~̀
1
, δ2α = ε2Y~̀

2
, (4.3)

where Y~̀
2

are harmonics on Sd−1 and ε1, ε2 are (infinitesimal) constants. The notation here

matches our previous notation for harmonics on the sphere; e.g. |~̀|2 = `(` + d − 2). For a

massive field φ we have

δ1Φ[α] = ε1ρ
2−d
2 Iν1

(mρ)Y~̀
1
,

δ2Φ[α] = ε2ρ
2−d
2 Iν2

(mρ)Y~̀
2
, (4.4)

where ν = ` + d−2
2 .

To evaluate (4.2), we make use of the asymptotic expansion:

Iν(z) =
1√
2πz

Aν(z) +
cos

(

(ν + 1
2)π

)

√
2πz

Bν(z), (4.5)
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where

Aν(z) := ez
∞

∑

k=0

(−1)k

(2z)k
Γ(ν + k + 1

2)

k!Γ(ν − k + 1
2)

, and

Bν(z) := e−z
∞

∑

k=0

1

(2z)k
Γ(ν + k + 1

2)

k!Γ(ν − k + 1
2 )

. (4.6)

We have obtained (4.5), (4.6) from [39], though in [39], the coefficient of Bν in (4.5)

involves exp(±(ν + 1
2)πi) instead of the cosine. This ambiguity is described as a “Stokes

Phenomenon.” Since we require a real solution, we have simply taken the average of the

two expansions. However, the result below is identical if one uses exp(±(ν + 1
2)πi) and

chooses the sign in a way which depends only on ν.

Inserting expressions (4.5), (4.6) into (4.2) yields three kinds of terms:

i) Terms involving Bµ1
∂ρBµ2

, which are too small to contribute as ρ → ∞.

ii) Terms involving Aµ1
∂ρBµ2

and Bµ1
∂ρAµ2

. These give finite contributions, which

cancel against each other.

iii) Divergent terms involving the expressions Aµ1
∂ρAµ2

.

Recall that the form of the action has only been fixed up to O(α2) terms. It is natural

to choose such terms to precisely cancel the terms of type (4.1), which arise only from

non-normalizable terms in the expansion of (4.5). As we will discuss in section 4.3 below,

this appears to be the analogue of the procedure followed in [40] for massless fields in a

linear dilaton background. One may hope that this is equivalent to subtracting the extra

“contact terms” noted above, together with any other contact divergences inherent in the

correlator itself. After making this choice, we find

〈0|T
(

φ̂∂(Y~̀
1
)φ̂∂(Y~̀

2
)
)

|0〉 = 0 (4.7)

for all m2 > 0.

We may also compute the correlator for m = 0. In this case, the radial mode func-

tions are simply ρλ for appropriate λ; there is no apparent mixing between normalizable

modes (φ̃) and non-normalizable modes (Φ). Thus, subtracting the m = 0 analogue of the

type (4.1) terms again yields (4.7).

The fact that (4.7) vanishes identically suggests caution in interpreting the result.

Indeed, as remarked above, the particular subtractions we have used are far from well-

justified. Recall that for m2 > 0 our subtractions are non-analytic in q2, and thus do

not qulitatively differ from the sort of finite remainder terms that one would expect. On

general grounds one might also expect to require a non-analytic subtraction for m2 = 0

(though we did not use one there). Thus, this approach to calculating the 2-point function

appears to be inherently ambiguous.

We note that the method of [12] will meet with similar problems: In AdS/CFT it avoids

divergences by working with separated operators, but our asymptotically flat computations

generate non-local “contact terms” which can diverge even at separated points. Thus, we

must seek another approach.
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4.2 Boundary correlators via the Wightman function

One might like to calculate 2-point functions directly from the basic definition of the

boundary operator (3.6). This is indeed possible if one focusses on Wightman functions,

and such an approach turns out to have several advantages. For example, in any local

field theory, the Wightman function is a well-defined bi-distribution, meaning that it is

finite when integrated against two smooth functions which behave appropriately at infinity.

There are thus no divergences from contact terms. The same is true of Wightman boundary

correlators in AdS, and we will see that the same is again true for asymptotically flat

boundary two-point functions.

The computation is straightforward using the representation of the bulk Wightman

function W (x, x′) as a sum over Klein-Gordon-normalized positive frequency modes. Since

modes with q > 0 are positive frequency while modes with q < 0 are negative frequency,

and since propagating modes satisfy (2.5), for any m ≥ 0 we have

W (x, x′) =

∫

q> d−2

2

dq
∑

~j

2

µ|Γ(iµ)|2 φ∗
q,~j

(x)φq,~j(x
′). (4.8)

Here we have used expression (A.10) or (2.11) for the Klein-Gordon norms of our modes.

Taking the boundary product of W with two modes Φq1,~j1
,Φ∗

q2,~j2
with q ≥ d−2

2 and

using the orthonormality of the Yq,~j we find

W∂(q1,~j1, q2,~j2) := 〈0|φ̂∂(Yq1,~j1
)φ̂∂(Y ∗

q2,~j1
)|0〉

=
2

µ|Γ(iµ)|2 δ(q1 − q2)δ~j1,~j2
for q1, q2 ≥ q − 2

2
. (4.9)

The boundary Wightman function vanishes for other modes. The result is finite, non-zero,

independent of m, and insensitive to the Bessel Stokes phenomenon.

From the result (4.9), one may now unambiguously compute the associated time-

ordered 2-point function. To do so, one need only write (4.9) as

W∂(q1,~j1, q2,~j2) :=

∫ ∞

0

dµ

π|Γ(iµ)|2 WH
q(µ)(q1,~j1, q2,~j2), (4.10)

where q(µ) =

√

µ2 +
(

d−2
2

)2
and

WH
q (q1,~j1, q2,~j2) =

π

q
δ(q − q1)δ(q − q2)δ~j1,~j2

(4.11)

is the Wightman function on H for a free scalar field of mass q. The is essentially the

Källen-Lehman representation of the Wightman function on H. The time-ordered two-

point function is then

〈0|T
(

φ̂∂(Y~̀
1
)φ̂∂(Y~̀

2
)
)

|0〉 =

∫ ∞

0

dµ

π|Γ(iµ)|2 GF,H
q(µ)(q1,~j1, q2,~j2), (4.12)

where GF,H
q(µ) is the Feynmann Green’s function on H for a free scalar field of mass q.

Note that there is a branch cut beginning at q = d−2
2 associated with the continuum of

propagating bulk states. Indeed, one sees that the analytic structure is determined by the

Källen-Lehman spectral function of the boundary operator φ∂ , which is in turn determined

directly by the spectrum of bulk states.
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4.3 Little string theory

Despite our success with methods based on Wightman functions, we have seen that com-

putations of asymptotically flat boundary 2-point functions by analogy with either [19]

or [12] faced serious difficulties. Now, as mentioned in the introduction, linear dilaton

backgrounds dual to little string theory share many features of asymptotically flat space-

times. As a result, one may hope to gain further insight by pursuing this analogy in detail.

To that end, we now consider boundary two-point functions associated with a scalar field

in the linear dilaton background dual to little string theory (namely, in the near-horizon

solution for N coincident NS5-branes [6]). We will see that, despite the evident success of

the Gubser-Klebanov-Polyakov method in this context [40, 41], the same issues identified

in section 4.1 also arise in linear dilaton backgrounds.

Let us first briefly review the linear dilaton spacetimes of interest. In the string frame,

the near horizon description of N coincident NS5-branes takes the familiar form

ds2
string = dx2

6 + dz2 +
N

m2
s

dΩ2
3,

g = g0e
− zms√

N , (4.13)

where dx2
6 is the 6-dimensional Euclidean metric and ms is the string mass scale. In the

strong coupling regime at large negative z, the physics is more properly described by the

near-horizon metric of N M5-branes on an S1. However, we will be interested only in the

asymptotics at large z where the corrections are heavily suppressed.

It is natural to consider a scalar field minimally coupled to the Einstein frame metric.

This metric takes the tantalizing form

ds2 = ρ2(dy2
6 +

1

16
dΩ2

3) + dρ2, (4.14)

where ρ = 4
√

N
ms

ezms/4
√

N and dy2
6 is again the 6-dimensional Euclidean metric, but with

rescaled coordinates yi = ms

4
√

N
xi. While (4.14) is not asymptotically flat, the metric com-

ponents involve the same powers of ρ as in flat Minkowski space.6

Massless scalar fields minimally coupled to (4.14) were studied in [40]. We now consider

massive minimally coupled fields.7 Solutions to the massive scalar wave equation are given

by

Φk,~j =
1

(2π)3
Y~je

ikaya

Iν(mρ),

Φk,~j =
1

(2π)3
Y~je

ikaya

Kν(mρ), (4.15)

6From this point of view, the S3 in (4.14) is on the same footing as the R
6. Yet only the R

6 forms the

spacetime of little string theory; the S3 is associated with an internal symmetry. It is possible that the fate

of the asymptotically flat H is more similar to this S3 than to the R
6. However, given that we expect a

non-local theory, this distinction may not be crucial at this level.
7It is not clear that string theory contains such fields, but it does contain close analogues. For example,

D0-branes naturally couple to a metric that can be written in the form (4.14), but with a different coefficient

in front of dΩ2
3 and a further rescaling of the R

6.
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with ν =
√

k2 + 16j(j + 2) + 16 and ~j labeling a complete set of states in SO(4). Since the

string coupling goes to zero at large ρ, M-theoretic corrections to (4.14) die off faster than

e−λρ for any λ and the corrections to these mode functions will be correspondingly small,

though they might result in some “mixing” through the addition of a further normalizeable

piece CKν(mρ) to the “non-normalizable” mode Iν(mρ) associated with some particular

boundary conditions. Note, however, that C must be determined by k2 and j (C =

C(k2, j)) and that C is real (at least in Euclidean signature).

Let us now consider the 2nd on-shell variation of the classical action. As in section 4.1,

three kinds of terms will be generated. The finite (type ii) terms again cancel8 for any

C(k2, j), so long as the Stokes phenomenon is again dealt with as in section (4.1). Terms

containing Aν1
∂ρAν2

are divergent. As in the asymptotically flat case, subtracting such

terms yields a time-ordered two-point function which vanishes for any m2 > 0.

However, for the same reasons as in section 4.1, the divergences associated with

Aν1
∂ρAν2

terms are again non-analytic in k; they do not have the form of familiar contact

terms. To interpret these divergences, recall that little string theory is non-local [16]. We

might therefore expect that any time-ordering operation is more complicated than for a

local theory, and may lead to divergences even at separated points. In fact, the same

argument as in section 3 suggests that the variation of the path integral will differ from

the time-ordered two-point function by non-local contact terms. The key point is that

the linear dilaton background’s bulk-boundary Green’s function is non-local in precisely

the sense described in section 2.4 for asymptotically flat space. To see this, consider the

non-normalizable solution

Φ =
1

(2π)6

∫

dk Φ
k,~̀

. (4.16)

The leading behavior is Φ ∼ δ(x)Y~̀
e−mρ√
2πmρ

, but the non-analytic dependence of Aν on k

means that Φ contains subleading non-normalizable terms not localized at x = 0. While this

observation again encourages the subtraction of such divergences, it raises the disturbing

prospect that the remaining finite part may be contaminated with unwanted (but finite)

non-local “contact” terms.

Let us also briefly compare the computations for massless fields. The linear dilaton cal-

culation was performed in [40], and the asymptotically flat case was discussed in section 4.1

above. Both calculations obtain a finite answer by subtracting only divergences analytic in

k. However, both manifest signs of non-locality via the need for ‘mode-dependent renormal-

ization’ [27, 42, 40]. One apparent difference is that the asymptotically flat result vanished

identically. However, despite the removal only of divergences analytic in k, there is no local

bulk-boundary propagator and it is possible that the finite remainders are again contami-

nated by non-local contact terms, and any comparison of the results should proceed with

caution.

We see that there is a strong similarity between the issues that arise in the asymp-

totically flat and linear dilaton contexts. Of course, there is also a significant difference.

Namely, as shown in [40, 41], at least for massless scalar fields, one does appear to ob-

8For m2 > 0. It is interesting that this does not occur [40] for m = 0.
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tain a physically interesting time-ordered two-point function by applying the analogue of

the Gubser-Klebanov-Polyakov method [19] along with a naive subtraction of leading di-

vergences. In particular, [40] showed that at small momenta such computations precisely

agree the results of the theory on M5-branes. Furthermore, in the thermally excited con-

text, [41] found such computations to precisely agree with those of [43] performed in little

string theory. Finally, [44] argued that the analytic structure of the two-point function

so-obtained properly matches expectations from the bulk spectrum of states. The evident

success of such comparisons suggests that a unique prescription for subtracting non-local

contact terms can be established for linear dilaton backgrounds and thus, perhaps, for

asymptotically flat spacetimes as well. Unfortunately, for the moment such a prescription

remains a mystery.

In the asymptotically flat context, we saw that computations of boundary Wightman

functions are free of the subtleties discussed above. As a result, this method appeared to be

preferred over working with the on-shell action. In the abstract, the same argument may

be made for linear dilaton backgrounds: the Wightman calculation is straightforward, and

again free of ambiguities. Yet one may ask if the linear dilaton Wightman calculation can

reproduce the above linear dilaton successes of the on-shell action method.9 While we leave

a detailed analysis of this question for future work, we note that the analytic structure of

the time-ordered correlator obtained via our Wightman-function method is directly tied

to the bulk spectrum of states for the same reasons as in the asymptotically flat case. In

particular, from the above results we find for any m2 ≥ 0 that, up to M-theory corrections,

the boundary Wightman function is

〈0|φ̂∂(e−ik1
aya

Y ∗
~̀
1

)φ̂∂(eik2
aya

Y~̀
2
)|0〉 =

2

µ|Γ(iµ)|2 δ(6)(k1 − k2)δ~̀
1,~̀2

, (4.17)

when µ =
√

−k2 − 16j(j + 2) − 16 is real and k0 > 0, and the boundary Wightman func-

tion vanishes when µ is imaginary or k0 < 0. The result is finite, and independent of m. As

in the asymptotically flat case, the associated time-ordered correlator is readily computed

using a spectral representation, which is in turn determined directly by the spectrum of

states in the bulk.

5. Discussion

We have proposed a framework in which an AdS/CFT-like correspondence may be ex-

plored for asymptotically flat spacetimes. Deformations of asymptotically flat boundary

conditions are naturally associated with a Lorentz-signature hyperboloid H at spacelike

infinity. This H is the home of our holographic dual, and we have stressed the analogy

with the R
5+1 home of little string theory which lies at spacelike infinity in a linear dilaton

spacetime.

As in AdS/CFT, the basic objects in our correspondence are boundary correlators,

which are related to variations of boundary conditions at H. In contrast, one often consid-

ers the S-matrix to be the fundamental observable in asymptotically flat spacetimes. It is

9It is clear from [12] that the two methods agree for AdS/CFT.
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Figure 2: A simplified conformal diagram of the AdS boundary.

natural to expect that these observables are related. Indeed, recall that in AdS the time-

ordered boundary correlators are related to on-shell truncated Green’s functions and thus

to the S-matrix [38]. At the formal level, such arguments carry over directly to our asymp-

totically flat setting and suggest that time-ordered boundary Green’s functions recode the

same information found in the S-matrix. In particular, since the bulk-boundary propaga-

tor produces solutions which behave like emxaka for real ka (section 2.4), it is natural to

regard our boundary correlators as an analytic continuation of the S-matrix to spacelike

momenta. One would like to find a precise form of this statement through an appropriate

treatment of the contact terms and (IR) divergences from section 4.1. Results for linear

dilaton backgrounds suggest that this is possible, but the details remain unclear.

Before turning to more technical issues, we should address a conceptual concern. In

AdS/CFT, one often describes boundary operators as inserting particles into the bulk. It

is also common to consider signals which enter through the boundary, propagate causally

through the bulk, and then return to the boundary. Clearly no such discussions are possible

for a dual theory at spacelike infinity, since there are no causal curves connecting this

boundary to the bulk.

However, we wish to emphasize that while such causal discussions are possible in the

AdS context, acausal connections between the bulk and boundary are nevertheless central

to the duality. This is most immediately evident from the expectation that the boundary

theory encodes information inside large stable black holes, though it can also be seen by

considering horizon-free geometries. The point is that the CFT must encode the full bulk

dynamics at each time; i.e., on any Cauchy surface C in the Sn × R spacetime in which

it resides. Thus, on any such C one expects the CFT to holographically encode even

information about the part of the AdS bulk to which it is not causally connected. This

feature is illiustrated in figure 2, which provides a simplified conformal diagram of the AdS

boundary. The black dot represents a Cauchy surface in the boundary manifold (solid line).

The dual theory on this surface must encode not only bulk data from the regions I± to
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which it is causally connected, but also from the causally disconnected region S.

Our main technical results are the computation of time-ordered and Wightman bound-

ary two-point functions in asymptotically flat spacetimes. These calculations raise a num-

ber of interesting issues:

i) m2 > 0 At first glance, the asymptotic behavior of massive fields near i0 seems to

be in direct parallel to the near-boundary behavior of scalar fields in asymptotically

AdS spacetimes. The leading asymptotics are a fixed function of ρ times an arbitrary

function of the coordinates η on i0. In particular, there is no issue of ‘mode-dependent

renormalization.’

However, attempts to calculate time-ordered two-point functions from the on-shell ac-

tion (section 4.1) required the cancellation of divergences non-analytic in the bound-

ary momenta. Such divergences cannot correspond to local contact terms on the

boundary. Furthermore, we noted in section 4.3 that the same phenomenon occurs

in linear dilaton backgrounds (where a gauge-gravity duality is well-established [6]).

We therefore propose that these divergences have the same logical status as do local

contact terms in a local field theory, and that their non-local nature merely reflects

the non-locality of the dual theory.

Two further forms of evidence were presented in favor of this viewpoint: First, it was

noted that even when considering boundary operators with disjoint support, in both

asymptotically flat and linear dilaton spacetimes the corresponding bulk calculations

do involve contact terms. This is in sharp contrast to the asymptotically AdS case.

Second, we considered the boundary Wightman functions for both asymptotically flat

and linear dilaton spacetimes. If the boundary operators are well-defined, then such

boundary Wightman functions must be finite and should be calculable directly from

the basic definition (3.6) of the boundary operators; no subtraction of divergences

is allowed. Indeed, our Wightman functions were both finite and unambiguous, and

they led to similarly well-defined time-ordered correlators. This supports the con-

jecture that meaningful dual theories exist, and that non-local divergences in the

on-shell action merely reflect complications of non-local theories.

ii) m2 = 0 Massless fields in either asymptotically flat or linear dilaton backgrounds

behave differently from massive fields. The dual boundary operators require ‘mode-

dependent renormalization’ and, as a result, there is no canonical map between

boundary conditions and functions on the boundary; i.e., there is no canonical trans-

formation of our momentum-space boundary correlators to position space. Neverthe-

less, using a natural normalization of the boundary condition mode-functions, only

local divergences appear when calculating time-ordered boundary two-point functions

from the on-shell action.

On the other hand, as in the massive case, an argument based on variations of the

path integral suggests that non-local contact terms can in fact arise. Thus, it is again

unclear whether computations of time-ordered correlators from the on-shell action

can be fully trusted; the finite results may be polluted by (non-local) contact terms.
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Such pollution may account for the rather surprising fact that this method (together

with a naive subtraction of divergences) led to an asymptotically flat boundary two-

point function which vanished identically. In contrast, a computation of boundary

correlators via the bulk Wightmann function was well-defined.

In the abstract, calculations via the on-shell action in linear dilaton backgrounds appear

(section 4.3) to suffer from the same difficulties as in asymptotically flat spacetimes. Yet,

there it is known [40, 41] that a naive subtraction of divergences leads in the end to

physically useful boundary correlators. This success remains mysterious at present but, if

it could be understood, it may indicate how much procedures may be properly applied to

asymptotically flat boundary correlators as well.

Let us now ask how one might move beyond the bulk gravity approximation. If a

precise relation between our boundary correlators and the S-matrix were found, it would

allow computation of boundary correlators using known techniques in string perturbation

theory. However, constructing the boundary Wightman functions directly from string

theory might offer a way around the troublesome divergences. While at present no such

technology is available, the fact that these correlators live on the boundary (and so are fully

gauge invariant) and are defined using ‘on-shell’ boundary conditions near i0 encourage the

belief that they are well-defined in string theory, and that this problem is merely technical.

Perhaps the most important remaining issue concerns the role of symmetries in our

proposed duality. It is clear that the bulk Lorentz group acts on the boundary theory

as the corresponding group of isometries on the hyperboloid H. A boundary stress tensor

whose integrals give associated conserved quantities was described in [17, 18]. However, the

status of bulk translations is less clear.10 Because translation killing fields are smaller at

infinity by a factor of 1/ρ as compared with rotations and boosts, the translations naturally

leave points of H invariant. However, they need not act trivially on the boundary theory.

Let us label points on H with unit vectors ρ̂a in R
d. In Euclidean signature, under a

translation xa → xa + λa we have ρ → ρ + λaρ̂a for large ρ. For m2 > 0, the result is

that each ‘boundary condition’ Φq,~j is multiplied by exp(mλaρ̂a). Since the bulk vacuum

correlators are translation invariant, the position-space boundary correlators are multiplied

by one factor of exp(mλaρ̂a) for each argument. In order for this to be a symmetry, the

boundary correlators must be invariant; i.e., they must vanish unless the arguments satisfy
∑

i ρ̂a
i = 0.

However, our Wightman functions do not appear to satisfy this condition. This may

be related to our lack of success with Euclidean methods in section 4.1. In particular,

the action of translations on boundary conditions is rather less clear in Lorentz signature,

where the quantity λaρ̂a grows arbitrarily large on each Hρ and no expansion in λaρ̂a

ρ is

uniformly valid. Identifying the action of translations on the Φq,~j will therefore require

more sophisticated techniques. We leave this important issue for future investigation.

As noted above, our hyperbolic representation of infinity is well adapted to the Lorentz

group. However, one can imagine other representations of i0. For example, it is often

10As noted in section 2.3, we choose our boundary conditions on the metric following [32, 17]. As a result,

supertranslations do not act as symmetries.
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useful to represent i0 by a cylinder which extends in the time direction. This construction

is natural in thermal contexts where one wishes to work in Euclidean space with periodic

time. However, a notable feature of cylindrical representations is that the metric along

the cylinder (i.e., the ‘time’ direction) does not grow as one approaches i0. Thus to some

extent the cylinder R × Sd−2 is merely an infinitesimal region of the hyperboloid H near

its intersection with the t = 0 plane. Nonetheless, it would be interesting to explore this

construction in more detail.

The main message of our work is to note that, in asymptotically flat and linear dila-

ton spacetimes, the null part of the boundary may not play a significant role in any

gauge/gravity duality. In contrast, the dual theory is naturally associated with a part

of inifinity which lies at the endpoints of spacelike geodesics, and which is associated with

the specification of boundary conditions for the bulk. Plane wave spacetimes would also be

interesting to analyze from this point of view. The boundaries so far understood [45, 46]

for such spacetimes are null, and thus do not provide natural homes for dual theories.

One would like to explore the possibility that the identification of an appropriate spacelike

infinity (see e.g. [47]) could lead to a self-contained theory dual to plane wave spacetimes.

Such a result would further clarify the BMN limit [48] of the AdS/CFT correspondence.
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A. Klein-Gordon normalizations

This appendix computes the Klein-Gordon inner product of modes of the form (2.3):

〈φ̃∗
q1,~j1

, φ̃q2,~j2
〉KG := i

∫

Σ

√
gΣ φ∗

q1,~j1
na←→∂ aφ̃q2,~j2

, (A.1)

where Σ is a Cauchy surface in M and ∗ denotes complex conjugation. Note that (A.1) is

the product of an L2 inner product of the radial functions

∫

ρ>0

dρ

ρ
K∗

iµ1
(mρ)Kiµ2

(mρ), (A.2)

with a Klein-Gordon inner product on H:

〈Y ∗
q1,~j1

, Yq2,~j2
〉KG,H := i

∫

C

√
ωC Y ∗

q1,~j1
ña←→∂ aYq2,~j2

. (A.3)

Here C is a Cauchy surface in H with induced volume element
√

ωC and future-pointing

unit (in H) normal ña. In (A.2), µi =
√

q2 − d−2
2 .
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The L2(R+, dρ
ρ ) factor may be calculated by realizing that Kiµ(eλ) are eigenfunctions of

the operator −∂2
λ +m2e2λ in L2(R, dλ) with eigenvalue µ2; i.e., by mapping the calculation

to a familiar scattering problem in an exponential potential. Since near ρ = 0 we have

Kiµ(z) =
1

2

[

Γ(iµ)
(z

2

)−iµ
+ Γ(−iµ)

(z

2

)iµ
]

, (A.4)

we conclude that
∫

ρ>0

dρ

ρ
K∗

iµ1
(mρ)Kiµ2

(mρ) =
π

2
|Γ(iµ1)|2δ(µ1 − µ2). (A.5)

To study the Klein-Gordon factor on H, we choose coordinates on H so that the line

element takes the form

ds2
H = −dτ2 + cosh2(τ)dΩ2

d−2, (A.6)

where dΩ2
d−2 is the unit round metric on Sd−2. We take each harmonic to be of the form

Yq,~j = exp(Tq,~j(τ))Y~j , where Y~j are the standard orthonormal harmonics on Sd−2. Since

Yq,~j satisfies the massive wave equation on H we find for large τ (where the |~j|2 term

vanishes) that
(

d2T

dτ2
+

dT

dτ

)2

+ (d − 2)
dT

dτ
+ q2 = 0. (A.7)

This equation is easily solved to yield two solutions

dT

dτ
= −d − 2

2
±

√

(

d − 2

2

)2

− q2, (A.8)

where by convention we choose the ± sign to match the sign of −q. The condition (2.6)

fixes e2T (τ=0) = 2d−2

2π q
(

q2 −
(

d−2
2

)2
)−1/2

. Taking C in (A.3) to lie in the distant future, it

is now straightforward to compute

〈Y ∗
−q,~j1

, Yq,~j2
〉KG,H = 0,

〈Y ∗
q,~j1

, Yq,~j2
〉KG,H =

q

π
δ~j1,~j2

. (A.9)

Here we have set |q1| = |q2| as enforced by (A.5).

The desired result is therefore

〈φ̃∗
q,~j

, φq′,~j′〉KG := i

∫

Σ

√
gΣ φ̃∗

q,~j
na←→∂ aφq′,~j′ = sign(q)

µ

2
|Γ(iµ)|2δ(q − q′)δ~j,~j′. (A.10)
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